MATH 2028 Honours Advanced Calculus II 2024-25 Term 1 Problem Set 3

due on Oct 18, 2024 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: Throughout this problem set, we use (r, θ) , (r, θ, z) and (ρ, ϕ, θ) to denote the polar, cylindrical and spherical coordinates respectively.

Problems to hand in

- 1. Find the volume of the region lying above the plane z = a and inside the sphere $x^2 + y^2 + z^2 = 4a^2$ by integrating in cylindrical coordinates and spherical coordinates.
- 2. (a) Find the volume of a right circular cone of base radius a and height h by integrating in cylindrical coordinates and spherical coordinates.
 - (b) How about the volume of an oblique cones where the vertex also lie at height h but not necessarily directly over the center of the circular base?
 - (c) In general, what is the volume of a generalized cone with a given base area A and height h?
- 3. Find the volume of the region in \mathbb{R}^3 bounded by the cylinders $x^2 + y^2 = 1$, $y^2 + z^2 = 1$, and $x^2 + z^2 = 1$.
- 4. Let $\Omega \subset \mathbb{R}^2$ be the open subset bounded by the curve $x^2 xy + 2y^2 = 1$. Express the integral $\int_{\Omega} xy \ dA$ as an integral over the unit disk in \mathbb{R}^2 centered at the origin.
- 5. Let $\Omega \subset \mathbb{R}^2$ be the open subset in the first quadrant bounded by y=0, y=x, xy=1 and $x^2-y^2=1$. Evaluate the integral $\int_{\Omega}(x^2+y^2)\ dA$ using the change of variables $u=xy, v=x^2-y^2$.
- 6. Let $B^n(r)$ denote the closed ball of radius a in \mathbb{R}^n centered at the origin.
 - (a) Show that $Vol(B^n(r)) = \lambda_n r^n$ for some positive constant λ_n .
 - (b) Compute λ_1 and λ_2 .
 - (c) Compute λ_n in terms of λ_{n-2} .
 - (d) Deduce a formula for λ_n for general n. (Hint: consider two cases, according to whether n is even or odd.)

Suggested Exercises

1. Let $\Omega \subset \mathbb{R}^2$ be the region bounded below by y=1 and above by $x^2+y^2=4$. Evaluate

$$\int_{\Omega} (x^2 + y^2)^{-3/2} dA.$$

- 2. Find the area enclosed by the cardioid in \mathbb{R}^2 expressed in polar coordinates as $r = 1 + \cos \theta$.
- 3. Let $\Omega \subset \mathbb{R}^3$ be the region bounded below by the sphere $x^2 + y^2 + z^2 = 2z$ and above by the sphere $x^2 + y^2 + z^2 = 1$. Evaluate the integral

$$\int_{\Omega} \frac{z}{(x^2 + y^2 + z^2)^{3/2}} \ dV.$$

- 4. Let $\Omega \subset \mathbb{R}^2$ be the open subset lying in the first quadrant and bounded by the hyperbolas xy = 1, xy = 2 and the lines y = x, y = 4x. Evaluate the integral $\int_{\Omega} x^2 y^3 dA$.
- 5. Let $\Omega \subset \mathbb{R}^3$ be the open tetrahedron with vertices (0,0,0), (1,2,3), (0,1,2) and (-1,1,1). Evaluate the integral $\int_{\Omega} (x+2y-z) dV$.
- 6. Let $\Omega \subset \mathbb{R}^2$ be the open subset bounded by x=0, y=0 and x+y=1. Evaluate the integral $\int_{\Omega} \cos\left(\frac{x-y}{x+y}\right) dA$. (Hint: note that the integrand is un-defined at the origin.)
- 7. Find the volume of the solid region $\Omega \subset \mathbb{R}^3$ bounded below by the surface $z = x^2 + 2y^2$ and above by the plane z = 2x + 6y + 1 by expressing it as an integral over the unit disk in \mathbb{R}^2 centered at the origin.
- 8. Let $\Omega \subset \mathbb{R}^2$ be the open triangle with vertices (0,0), (1,0) and (0,1). Evaluate the integral $\int_{\Omega} e^{(x-y)/(x+y)} dA$
 - (a) using polar coordinates;
 - (b) using the change of variables u = x y, v = x + y.

Challenging Exercises

1. (a) Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation of one of the following types:

(i)
$$\begin{cases} g(e_i) = e_i & i \neq j \\ g(e_j) = ae_j \end{cases}$$

(i)
$$\begin{cases} g(e_i) = e_i & i \neq j \\ g(e_j) = ae_j \end{cases}$$
(ii)
$$\begin{cases} g(e_i) = e_i & i \neq j \\ g(e_j) = e_j + e_k \end{cases}$$

(iii)
$$\begin{cases} g(e_j) = e_j + e_k \\ g(e_k) = e_k & k \neq i, j \\ g(e_i) = e_j \\ g(e_j) = e_i \end{cases}$$

If U is a rectangle, show that the volume of q(U) is $|\det q| \cdot vol(U)$.

- (b) Prove that $|\det g| \cdot vol(U)$ is the volume of g(U) for any linear transformation $g: \mathbb{R}^n \to \mathbb{R}^n$. (Hint: If det $g \neq 0$, then g is the composition of linear transformations of the type considered in (a).
- 2. Let $\Omega \subset \mathbb{R}^n$ be a bounded subset with measure zero $\partial \Omega$. Show that for any $\epsilon > 0$, there exists a compact subset $K \subset \Omega$ such that ∂K has measure zero and $\operatorname{Vol}(\Omega \setminus K) < \epsilon$.